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Abstract—Network slicing is a critical feature of the beyond
fifth-generation (B5G) network that supports a wide range of
innovative services from 5.0 industries, next-generation consumer
electronics, smart healthcare, etc. Network slicing guarantees the
provisioning of quality of service (QoS) aware dedicated resources
to each service. However, the orchestration and management
of network slicing is very challenging because of the complex
configuration process for underlying network resources. Further-
more, the third generation partnership project (3GPP) presented
artificial intelligence (AI) based network data analytics function
(NWDAF) in 5G for proactive management and intelligence.
Therefore, we have developed an intent-based networking (IBN)
system for automating network slices and an AI-driven NWDAF
for proactive and intelligent resource assurance. The network
data analytics function uses a hybrid stacking ensemble learning
(STEL) algorithm to predict network resource utilization and
a novel automated machine learning (AutoML) and voting en-
semble learning-based mechanism to detect and mitigate network
anomalies. To validate the performance of the implemented work,
real-time datasets were employed, and a comparative analysis
was conducted. The experimental result shows that our STEL
model enhances the accuracy by 20% and reduces the error rate
by 45%. The AutoML and ensemble learning-based optimized
model achieved 99.22% accuracy for anomaly detection.

Index Terms—Beyond 5G networks, Next-Generation Con-
sumer Electronics Services, 5G Slicing, Intent-based Networking,
AI, Automated Machine Learning, Network Data Analytics
Function

I. INTRODUCTION

The traditional networks do not support a wide variety of
novel next-generation consumer electronics services, Web 3.0,
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and industry 5.0 services and ensure just limited services in
terms of messaging, voice, and internet access. These novel
services have different quality of services (QoS) requirements
regarding bandwidth, latency, mobility, reliability, and capac-
ity. Additionally, the consumer electronics industry is growing
rapidly with the continuous increase in smart electronic de-
vices. Due to that, many novel consumer electronics applica-
tions (gaming and entertainment) have emerged. These smart
consumer electronics services have strict QoS requirements,
such as ultra-low latency and seamless connectivity [1]. So, it
is very challenging for the traditional network to accommodate
these diverse consumer electronics services. On the other side,
the primary vision of the 5G and beyond networks are to fulfill
the diverse service requirements of different consumers, mo-
bile network operators (MNOs), industrial verticals, consumer
electronics verticals, and businesses [2]. The future genera-
tion mobile networks should accommodate various industrial
verticals, including energy, automotive, healthcare, media, en-
tertainment, consumer electronics, and manufacturing. These
industrial use cases have diverging QoS requirements, and
service-oriented architecture is needed to handle these various
use cases. However, the 5G is designed on a service-based
pattern that efficiently entertains multi-services with desired
bandwidth, reliability, and latency [3], [4].

In recent years, network function virtualization (NFV) and
software-defined networking (SDN) have emerged as cutting-
edge technologies for constructing virtualized, softwarized,
cloudified, highly programmable, and flexible 5G mobile net-
works [5]. SDN decouples the control plane from the data/user
plane. The network functions (NFs) in the control plane run as
independent applications under the centralized network con-
trollers. On the other side, NFV enables MNOs to deploy their
NFs in a Whitebox or generic hardware instead of expansive
dedicated hardware devices. So, NOs can quickly deploy their
various virtual network functions (VNFs) over general-purpose
servers. Also, mobile edge computing (MEC) emerges as a
key technology to overcome the low latency issue, where the
storage, computation, and network resources move from the
central cloud to the edge. It is also q critical technology of
the 5G network to ensure ultra-low latency communication
for latency-oriented applications. However, network slicing is
the best candidate for MNOs to provide differentiated QoS
requirements to each user category [6], [7].



Network slicing is partitioning the physical network into
several virtual networks. 5G slicing is possible due to the
SDN and NFV computing technologies. Each of the logically
isolated networks serves a specific group of consumers. It
also enables the MNOs to share their infrastructure among
other verticals to ensure service guarantees [8], [9]. So, slicing
the network is the best choice to accommodate the distinct
tailored service requirements of different businesses, indus-
trial verticals, next-generation consumer electronics service
providers, and consumers over the same physical infrastruc-
ture. It facilitates infrastructure providers to use generic hard-
ware devices for implementing multiple VNFs for a slice rather
than legacy hardware devices. So, multiple VNFs are chained
together flexibly to establish an end-to-end (e2e) network slice
for a specific user group. The fully cloud-native nature of
network slicing makes the 5G networks highly flexible and
programmable, supporting various services efficiently [10],
[11].

The International Telecommunication Union (ITU) and
3GPP have divided these diverse services into ultra-reliable
low latency (URLLC), enhanced mobile broadband (eMBB)
service, and massive machine-type communication (mMTC).
The eMBB slice category contains ultra-high definition (UHD)
communication services, e.g., video streaming. Also, the
URLLC slice type includes low-latency applications, au-
tonomous driving, and healthcare industry communication.
Besides, the mMTC contains smart agriculture, smart factory,
metering, billing, and logistics services type communication
[12]. So, the automatic management and orchestration of these
innovative services is required.

Moreover, the Internet Engineering Task Force (IETF) in-
troduced an innovative technology, namely Intent-based Net-
working (IBN), for automating the network [13]. IBN is
an intelligent system that enables the future network to be
self-configured, self-planned, self-assured, and self-healing.
It provides closed-loop assurance for handling multi-domain
network resources. Conversely, In the 5G control plane, 3GPP
has also introduced an innovative NWDAF function to pro-
vide intelligence to the network [14]. It collects the data
from control and user plane NFs: user plane function (UPF),
access and mobility management function (AMF), network
slice selection function (NSSF), etc., and performs analytics
by using various machine learning (ML) techniques. These
ML algorithms are trained on historical network data and
perform recommendation, prediction, and detection tasks [15]–
[17]. So, AI and ML technologies are very popular for the
proactive automation and management of cloud resources. Due
to this, NWDAF is the best choice for performing proactive
management and assurance of multi-domain resources.

A. Research Motivation

The primary aim of the 5G network is to accommodate a
wide variety of innovative services with differentiated QoS re-
quirements. So, it is a highly error-prone and time-consuming
process to generate manual configurations for every service.
It also needed adequate human intervention, manual work,

and expertise. Besides, the manual resource allocation in
multidomain infrastructure for establishing an e2e network
slice is not optimal. The automatic deployment of network
resources over the RAN and core domain is still challeng-
ing because each domain requires specific configurations.
So, a well-designed solution is required to generate multi-
domain network configurations for activating e2e slices as
per QoS requirements. Conversely, AI and ML approaches
are needed to manage network resources proactively. In this
aspect, dynamic scaling of the cloud resources is another
critical issue while managing the cloud resources. It causes
degradation of the QoS in resource overloading and wastes
the cloud resources in underloading cases. Hence, autoscaling
cloud resources is vital for reducing costs and guaranteeing
the customers’ QoS requirements. So, an AI and ML-based
accurate estimation of future network resource utilization to
perform autoscaling is needed. Predicting accurate network
usage can enhance network efficiency and reduce operational
costs. The prediction results can also be used to consolidate
resources, proactive management, host mode detection, and
QoS assurance. Moreover, ensuring network security is a vital
consideration for the future of mobile networks. Nowadays,
AI approaches seem very promising to enhance network
security. So, a computationally efficient ML-based mechanism
is needed to detect network anomalies accurately.

B. Research Contributions

To overcome the challenges associated with the above-
mentioned research problems, these are the major objectives
and contributions of this research:

• An IBN system to automate the slice configuration gener-
ation process and orchestrate the slice resources over the
multi-domain infrastructure. IBN eliminates manual pol-
icy generation and automatically performs instantiation,
activation, and deletion of slice resources.

• IBN follows a one-touch approach where users need to
insert abstract QoS requirements from the GUI portal, and
the system converts these service QoS into slice templates
or policies. After that, generated slice configurations are
implemented with the Open Source Mano (OSM) and a
RAN controller.

• AI techniques are an important aspect of the IBN platform
for proactive updates and assurance. So, we have devel-
oped an NWDAF-based mechanism for IBN to enable
network intelligence.

• A hybrid stacking ensemble learning (STEL) model has
been implemented inside the NWDAF for network re-
source workload prediction. These results can be used
for autoscaling resources, QoS assurance, detecting over-
loaded and underloaded hosts, and improving resource
usage efficiency.

• A novel autoML and voting ensemble learning-based
optimized method has been implemented to detect and
mitigate network anomalies and ensure network security.

• The NWDAF enhances the intelligence of the IBN mech-
anism by enabling proactive management and updates



of network slice resources, as well as detecting and
mitigating network anomalies.

C. Paper Structure

The rest of the paper is structured as follows. Related
literature about network slicing automation and management,
IBN, NWDAF, AI approaches for resource usage forecasting,
and network attack detection and mitigation is presented in
Section II. Section III presents the details of our system with
its components, such as the IBN framework for network slicing
and NWDAF for AI intelligence. Section IV explains the
results and performance analysis of the implemented system.
The concluding remarks on the implemented mechanism have
been summarized in Section V.

II. RELATED WORK

This section explains the detail of previous works related
to network slicing, 5G networks, orchestration and manage-
ment of novel consumer electronics and B5G services, slice
LCM, and AI /ML approaches for the automation of future
networks. It also includes industrial solutions for automating
the networks.

A. E2E Network Slice Orchestration and Management

To provide differentiated services to 5G consumers, the
management and automation of network slicing is an essential
activity for MNOs. Several mobile network standardization
bodies have defined the specifications for e2e network slice
automation and management, such as 3GPP, IETF, Euro-
pean Telecommunication Standards Institute (ETSI), ITU,
Next Generation Mobile Network (NGMN), Fifth Generation
Partnership Project (5GPP), etc. As aforementioned, network
slicing is divided into three major types: eMBB, URLLC, and
mMTC. The eMBB type of service needs reliable broadband
connectivity and high speed. On the other side, URLLC
slice requires low-latency communication, and mMTC requires
seamless connectivity for many devices and smart industries
[12], [18], [19].

Several open-source orchestration platforms were imple-
mented in the literature. These orchestration platform supports
network slicing and automation. Some well-known orchestra-
tion platforms are Tacker, COMEC, open network automa-
tion platform (ONAP), JOX, M-CORD, SONATA, OPNFV,
5G NORMA, Cloudify, OpenBaton, OpenStack HEAT, and
Open-O [20]–[26]. The primary aim of these platforms is to
enable programmability to automate the network resources
deployment over the infrastructure. The network administra-
tors define the policy configurations for the deployment of
the resources. For example, the OpenStack platform is used
to deploy the VNFs and SDN-based controllers are used for
chaining the VNFs and handling transport network operations.

The 3GPP has also introduced an architecture for the
management of the 5G networks that includes communication
service management function (CSMF), network slice manage-
ment function (NSMF), and network slice subnet manage-
ment function (NSSMF) [18]. The CSMF acts as a central

management entity for deploying and managing e2e slices. It
creates the network slice requests and sends them to NSMF for
further operations. The MNOs used CSMF functions to plan,
design, and activate the network slices. Conversely, NSMF
translates the slice requirements and generates domain-specific
configurations. Further, those configurations are forwarded to
NSSMF to deploy the network slice instances. Each domain
has separate NSMF, e.g., RAN, core, edge. Also, NSSMF
ultimately manages each slice instance. Moreover, the CSMF
receives network slice requests with QoS requirements from
the customers and forwards those requests to NSMF. NSMF
converts slice QoS into policies and activates the resources
with the cooperation of NSSMF. The slice instances are
appropriately monitored, and CSMF performs autoscaling of
the network resources whenever needed [27].

Meneses et al. [28] developed a slice automation system
to instantiate e2e network slices. It can deploy multiple
network functions physically and virtually. This plugin-based
system, SliMANO, interacts among network orchestration
entities, such as orchestrators and controllers, for an e2e slice
activation. These entities can be NFVOs, SDN controllers,
and RAN controllers. They have compared their system with
OSM’s recent network slicing feature (NetSlice) by creating
and deleting e2e slices. It achieves less delay for slice creation
and deletion. This SliMANO allows the interaction of multiple
SDN and RAN controllers. Li et al. [29] discussed network
slicing in transport, core, and RAN domains. The presented
work used a separate slice controller or orchestrator for each
domain. Experimental results were conducted to prove the
benefits of network slicing in RAN by using a two-level radio
resource allocation method. They achieved the performance
of e2e network slicing with better granularity, slice creation,
deletion, and scheme adjustment.

However, existing orchestration platforms require manual,
domain-specific, and complex network configurations to ac-
tivate resources. These platforms also require expertise and
human involvement, which is highly error-prone. In addition,
configuring and activating multidomain resources, including
core VNFs, RAN, and transport network resources, are very
complex because each domain requires configurations in a spe-
cific format such as JSON template, YAML template, etc. Be-
sides, the standardized bodies are working towards zero-touch
network orchestration and management, which automatically
performs resource configuration and activation without human
interactions. So, our IBN system with AI-driven network data
analytics architecture is a step towards zero-touch automation,
which automatically performs orchestration and management
of core VNFs and RAN resources in a network slicing context.

B. Intent-Based Networking

Another standardization body IETF has introduced the
specifications for automating the network through IBN [13].
IBN is an intelligent system that guarantees self-configuration,
self-assurance, self-planning, and self-healing capabilities for
the future network. Many industrial organizations such as
Cisco [30], Huawei [31], APSTRA [32], etc., also adopted



IBN technology for the orchestration of 5G networks. IBN
works in four phases. Firstly, users need to input business
intents through the system’s dashboard; Secondly, received
service requirements are translated into policies through the
translation engine. Thirdly, translated policies are deployed
over the physical and virtual infrastructure. Finally, deployed
services are appropriately monitored to ensure the services
and updates in case of failure. According to the IETRF
[13] IBN for closed-loop automation, a proper IBN system
(IBNS) contains two fundamental qualities that make it more
than just a fancy configuration management platform: intent
fulfillment and intent assurance. IBNS can recognize and
generate user intents, translate them into policies, refine from
NOs to validate intent, configure the resources, monitor the
deployed resources, analyze network status, validate the QoS,
and report to the operator for service assurance. Another well-
known industrial organization Apstra [32] have also developed
a solution for automating the network. This solution can be
achieved through the following three technologies: Firstly,
they have developed an IBN platform for service designing,
translation of policies, self-reporting, and validation. Secondly,
Single Source of Truth (SSOT), closed-loop network automa-
tion, and data analytics mechanisms are achieved through a
graph datastore. Thirdly, they provide complete openness and
vendor independence. They have an IBN analytics mechanism
that allows insight into the complete infra status and collects
and stores more important data. Apstra has an Apstra oper-
ating system (AOS) that allows real-time designing, building,
deploying, and validating networks.

C. AI and ML approaches for Network Resource Utilization
Prediction

Many studies have used AI and ML approaches in multiple
areas for proactive automation and management of cloud
resources: AI-assisted network data analytics, network re-
source usage prediction, anomaly detection, mitigation, radio
resource management, QoS assurance, Proactive management,
and mobility prediction [15].

Sevgican et al. [33] have developed AI-based NWDAF with
3GPP standard specifications. A synthetic dataset based on
cell-level information was generated for 5G, incorporating
anomalies. Network load prediction was conducted using re-
cursive neural network (RNN) based long short-term memory
(LSTM) and linear regression (LR) methods. Additionally,
extreme gradient boosting (XGBoost) and logistic regression
models were employed for anomaly classification. The sim-
ulation results showed that neural network-based algorithms
outperformed LR for resource load forecasting. However, the
XGBoost algorithm outperformed logistic regression while
detecting network anomalies. Therefore, these estimations can
enhance the 5G network performance through NWDAF.

Ouhame et al. [34] developed a hybrid LSTM and convolu-
tion neural network (CNN) based method to forecast multivari-
ate resource usage: memory, CPU, and throughput utilization.
Initially, the vector auto-regression technique filtered linear
interdependencies from the dataset. After the LSTM stage,

the residual data is computed and inputted into a CNN,
which captures intricate attributes of each virtual machine
utilization component. The implemented model utilizes an
activation function based on a scaled polynomial constant and
is compared against alternative predictive models. It improved
the accuracy performance up to 3.8% to 10.9% and reduced
error to approximately 7% to 8.5% than existing methods.

Abdullah et al. [35] implemented the support vector re-
gression (SVR) algorithm to predict multi-attribute resource
utilization. Inside SVR, radial basis kernel function and se-
quential minimal optimization algorithm (SMOA) were hyper-
tuned to improve the forecasting accuracy. They used real
datasets from Google Cluster Workload Traces (GCWT),
BitBrain (BB), and PlanetLab (PL) to validate their results.
They improved the accuracy to 4%-16%, with the reduction
in error percentage at around 8%-60%.

Iqbal et al. [36] implemented a novel method that identifies
the most suitable method adaptively and automatically to
predict future resource usage. Multiple ML models have been
trained on a historical dataset. An ML classifier was used to se-
lect the best prediction method for a current time slot. Besides,
the adaptive model was evaluated using real-time data and
compared to multiple baseline methods. The results indicated
that the adaptive method outperforms existing approaches by
improving 6% to 27% prediction accuracy. Moreover, an EL-
based hybrid model was developed for CPU usage prediction
in this work [37]. The hybrid model is a combination of
multiple lightGBM models. It shows a maximum R2 = 0.91
accuracy while performing CPU prediction.

Nowadays, AI has been widely used in 5G networks,
but there is still a lack of standard solutions to build an
operational system. Bega et al. [15] proposed the NWDAF
mechanism using AI methods for long-term and short-term
future forecasting. Their proposed framework used various AI
techniques to develop a fully operational system. The domain
orchestrators use the results from implemented AI methods for
controlling and managing the resources.

The constant changes in cloud resource usage affect the
accuracy of forecasting algorithms, which is challenging.
Therefore, RNN was applied for predicting CPU utilization in
terms of single time-step and multiple time-steps by Duggan et
al. [38]. It predicts more accurately than traditional approaches
for time series problems. Islam et al. [39] developed ML
and slide window-based forecasting models to scale cloud re-
sources proactively. Historical and current resource utilization
data were used to forecast future utilization. It shows 80% pre-
diction accuracy. Kumar et al. [40] used a neural network and
self-adaptive differential evolution to predict future resource
usage. This proposed approach provided better accuracy than
the standard back-propagation algorithm concerning RMSE.
Gupta et al. [41] have implemented multivariate and bidi-
rectional LSTM models for resource usage forecasting. The
generated results of both models were compared with different
fractional-based techniques and outperformed existing models
based on Google cluster trace.



D. ML-based Approaches for Network Attack Detection

This section explains the ML-based methods for network
attack detection. In this work [42], authors developed a hy-
brid EL-based model that includes the support vector ma-
chines (SVM), Kalman Filter, and fuzzy K-means for network
anomaly detection. The proposed method was evaluated using
DARPA 1998 and KDD 1999 datasets. This method shows
more than 92% of F-score, precision, and accuracy. This work
[43] used a Hidden Markov model for network attack detec-
tion. Through their findings, it was discovered that the Hidden
Markov model exhibits superior performance compared to
other anomaly detection techniques, as evidenced by lower
false-positive rates and higher average anomaly detection rates.

Recently, various ML algorithms have been developed for
detecting malicious traffic in SDN-enabled networks. This
research paper focuses on detecting attack traffic in vehicular
networks, leveraging the centralized control aspect of SDN
[44]. The study proposes a combination of SVM with kernel
principal component analysis (KPCA) for dimension reduction
of feature vectors, complemented by a genetic algorithm (GA)
to optimize various SVM parameters, ultimately enhancing
detection accuracy. Additionally, an improved kernel func-
tion (N-RBF) is employed to mitigate the impact of feature
differences-induced noise. The proposed model demonstrates
superior classification accuracy and generalization compared
to standalone SVM models. Furthermore, it can be integrated
within the controller to establish security rules and preempt
potential attacks by malicious entities.

This paper [45] presented a deep neural network-based
DDoS attack detection method named Secure5G for the net-
work slicing environment. This method detects the attacked
UE connection and stops it from entering into 5G core VNFs.
The developed mechanism achieved above 98% accuracy for
attack detection. In this work [46], Authors have developed an
LSTM-based method to detect network anomalies named as
DeepSecure. It achieved a very good 99.97% accuracy for de-
tecting the attack on the CICDDoS 2019 dataset. Danish Sattar
and Ashraf Matrawy [47] have developed a mathematical slice
isolation mechanism to mitigate DDoS attacks. This method
enhances security and provides secure communication to 5G
slicing users. This approach also increases the slice availability
to the 5G users. So, various ML and DL-based solutions have
been developed for attack detection from the networks, but
most of the DL methods are computationally inefficient and
take more training time than ML methods. However, we have
developed an optimized and novel AutoML and EL-based
mechanism for the detection of network anomalies for securing
5G slicing and future networks.

III. PROPOSED IBN AND AI-DRIVEN DATA ANALYTICS
SYSTEM

The architecture of the proposed IBN and NWDAF mecha-
nism for e2e slice automation and management is presented in
Figure 1. It includes the IBN framework, NWDAF, OSM NFV
orchestrator, FlexRAN controller, and monitoring method. The

details of each component for automation and management of
network slicing are explained below.

A. IBN Framework for Network Slice Automation and Man-
agement

The IBN system contains a web portal, e2e design and
information repository, intent translation mechanism, network
policy generation, and NWDAF. The IBN system provides
closed-loop capabilities for managing and automating multi-
domain resources. It automatically instantiates, activates, mon-
itors, and deletes network slices. The higher-level service
requirements are inserted from the web portal of IBN in
the user intent form. The intent translation module converts
inputted intentions into a specific slice resource requirements
format. The e2e design and information repository is an IBN
database that stores the information of underlying core and
RAN resources, installed policies, APIs, and e2e network
topology for slice connection.

The IBN translation module translates the user intents into
resource requirements and prepares a VNF forwarding graph
(VNFFG) using underlying resource database information.
After that, the IBN manager forwards VNFFG to the network
policy generation module to prepare the slice template for each
domain. The underlying controller and network orchestrator
accept the configurations in different formats, such as M-
CORD in TOSCA format, OSM in JSON string, and FlexRAN
controller in JSON template. Due to that, our policy generation
module contains three policy generators for the core, edge, and
RAN domains. Each domain policy generator translates the
resource requirements into a domain-specific slice template
and forwards them to the underlying orchestrator and RAN
controller to deploy slice resources.

In our system, we have used the OSM orchestrator to deploy
the slice VNFs according to the received slice template over
the core domain. ETSI MANO-based OSM is a leading NFVO
for VNF deployment, offering NFVO, VNFM, and VIM
functionalities for network automation and management. OSM
used integrated OpenStack as a virtual infrastructure manager
(VIM) for deploying core VNFs. OSM accepts policies as
JSON strings—Network Service Descriptor (NSD), Virtual
Network Function Descriptor (VNFD), and Network Slice
Template (NST)—via REST interfaces to facilitate resource
deployment. The NSD outlines VNF connections for service
provisioning, while VNFD contains networking, interfacing,
and resource details [23]. The IBN mechanism utilizes REST-
API to convey the prepared slice template in JSON strings to
OSM, enabling the deployment of core network instances.

Conversely, to manage network slicing in the RAN do-
main, we employed FlexRAN, an SDN-based RAN controller
known for its adaptability and versatility in accommodating
various RAN operations [48]. Its support for dynamic RAN
slicing makes it particularly adept. In our approach, IBN
utilizes a REST interface to transmit the JSON-formatted
slice template, crafted by the RAN slice template generator
module, to FlexRAN. The RAN slice template includes the
information of the dedicated core network VNFs for creating



Fig. 1: Architecture of IBN and NWDAF for e2e network slice automation and management

an e2e connection. So FlexRAN facilitates the slicing of RAN
resources according to Quality of Service (QoS) parameters.
After activating the slice, the slice core and RAN resources
are continuously monitored through Grafana, Prometheus, and
ElasticMon-based monitoring mechanisms. It also collects and
stores the data logs from core VNFs for performing future
VNF load prediction.

B. IBN-based Network Data Analytics Mechanism for Proac-
tive update and assurance

The ML-NWDAF is a novel feature of the IBN framework
that provides intelligence for proactive updates and assurance
of network resources. It assists the NOs in managing the
resources and reduces QoS degradation by future prediction.
NWDAF has pre-trained ML models on historical network
data from the core network. We implemented two ML methods
for resource (VNF) usage forecasting and network anomaly
detection. NWDAF provides the outcomes to the IBN platform
to achieve specific use cases such as resource utilization pre-
diction, attack detection and prevention, mobility prediction,
load balancing, etc.

Figure 2 illustrates the internal NWDAF ML pipeline mech-
anism with the IBN platform, where data is collected from the
underlying data plane’s different source (SRC) nodes. Using

Fig. 2: NWDAF internal workflow and ML-pipeline for ML
training and execution

the KAFKA framework, we deployed a data exporter node
inside each domain for data collection (DC) purposes. The
collected raw data has been stored separately in real-time
NWDAF data storage. After that, raw data is preprocessed
through cleaning, transformation, and feature extraction ML



operations. The extracted preprocessed data is stored in the
data storage module. We have used the Spark big data ana-
lytics framework for data analytics and storage. The stored
preprocessed data is further used for training ML models.
Once the model has been trained, it is evaluated based on
performance measures such as accuracy and mean square error
(MSE). If the model provides satisfying accuracy, it will be
deployed for execution. The results of various executed ML
models have been forwarded to the IBN decision engine,
which triggers update policies such as scale-up, scale-down,
or DDoS attack detection and prevention policy. After that,
the issued policy will be deployed over the sink nodes through
domain controllers and NFVO. Our mechanism uses a stacking
EL-based model inside the C-DAF module to predict core
VNF resource utilization or resource forecasts and an AutoML
and EL-based optimized model for anomaly detection. The
other module decision engine of the IBN platform has a
dynamic thresholding-based model that uses the NWDAF
module’s prediction results and performs the auto-scaling of
the resources in case of host overloading and underloading.
These VNF resource forecasting results will also be used for
VNF consolidation and load balancing.

Fig. 3: Implemented mechanism of stacking ensemble-learning
based method for multi-attribute resource workload prediction

1) Stacking Ensemble-Learning (STEL) model for VNF
workload Prediction: Ensemble Learning (EL) is an ML
technique that combines different models to produce optimized
and improved accuracy. It is divided into three categories for
implementation: bagging, boosting, and stacking. In this work,
we have used stacking EL, also referred to as the stacked
generalization technique, to improve and optimize network
resource workload prediction. The stacking EL approach’s

prediction results are typically superior to that of individual
models. In the stacking approach, several classifiers or re-
gressor models are integrated using a meta-regressor or meta-
classifier. The meta-regressor model is trained using the output
from the base learner models (level-0). The meta-regressor
model learns from the base learners’ experience [49], [50] to
reduce errors in the final prediction result.

Additionally, we used Extreme Gradient Boosting (XG-
Boost) as a meta-learner (Level-1) model and Gradient Boost-
ing Machine (GBM) and Catboost as base-learner (Level-0)
models. The workflow process of the STEL model is depicted
in Figure 3. The implementation of considered ML models for
network resource workload prediction are explained below:

a) Gradient Boosting Machine (GBM): Friedman in-
vented GBM in 2002, a very effective ML method that
precisely performs regression and classification tasks [51]. The
primary idea behind GBM is to reduce the loss function by
including an additional weak learner model to compensate
for the weaknesses of the existing weak learner models. It
minimizes bias and variance by adding base learner models
and focusing on the incorrectly classified data. GBM uses
several regression trees (base learner models) and combines
their output to perform the final prediction. The boosting
approximation function is explained in equation (1) where
h(t; bk) is a function for base learner model, Bk is expan-
sion coefficients, t represents explanatory variables, and bk
illustrates the model parameters.

F(ti) =

N∑
k=1

Bkh(t; bk) (1)

The following hyperparameters were used to implement the
GBM model: 1000 trees, 0.1 learning rate, evaluation criteria
is Friedman MSE, 1.0 subsample, and 0.1 validation fraction.
So, various recently developed boosting algorithms such as
Catboost, LightGBM, and XGBoost used GBM as a base
algorithm to boost scalability.

b) XGBoost: Tianqi Chen and Carlos Guestrin developed
the supervised learning technique XGBoost (eXtreme Gradient
Boosting) in 2014 [52]. It operates on the boosting concept,
which allows for creating an active learner from weak learners.
It is a function approximation and regularization-based tree in-
tegration algorithm that effectively implements the GBM algo-
rithm. It is a scalable boosting method and more than ten times
faster than other boosting techniques. The most crucial factor
in the XGBoost algorithm is parallel and distributed compu-
tation ability and innovative tree learning model for handling
spare data. The sample forecast in the model used by XGBoost
is the cumulative sum of the predicted values for a sample
in each tree. Moreover, it reduced the overfitting problem
due to the addition of regularization terms and loss functions
optimization. In our scenario, dataset D is given with n fea-
tures D = [(X1, Y1), (X2, Y2), (X3, Y3), . . . , (Xn, Yn)] to the
model which has K number of trees for the target prediction Ŷi

as illustrated in equation (1). Also, FX = WQ(X), (W ∈ RT )
is Classification and regression Tree (CART) space, Q denotes



structure of each tree, T represents number of leaf nodes in
the tree, W is leaf weights, and FK presents Kth tree.

Ŷi =

K∑
k=1

Fk (Xi) , Fk ∈ F (2)

Equation (2) explains the objective function, which has two
parts loss function regularization terms, where Yi is true label

values, Ŷi is the predicted values,
I∑
i

L(Yi, Ŷi) is the loss per

sample and loss function L can be customized in several ways.
The main goal is to minimize the objective function. On the

other side, Ω (Fk) = γT + 1
2λ

T∑
j=1

W 2
j is regularization term

where W is jth tree leaf node weight, γ is regular leaf tree
penalty term, and λ is regular leaf weight penalty term. These
both penalty terms act as a smoothing factor and prevent the
overfitting problem.

Obj (θ) =

I∑
i

L(Yi, Ŷi) +

K∑
k

Ω (Fk) (3)

Obj (t) =

n∑
i

L(Yi, Ŷ
(t−1)
i + Ft(Xi)) + Ω (Ft) (4)

Equation (3) illustrates the objective function for tth tree,
whereas t− 1 is the sum of the predicted values of the t− 1
tree, Ft(Xi) is the output of the tth tree, and regularization
values become the corresponding values of the latest tree. So,
the final prediction is the sum of the output of numerous
trees. The following setting parameters were used to tune the
XGBoost Model: 5000 total number of trees, 50 early stopping
rounds, maximum depth of the tree is 3, learning rate 0.1,
linear regression objective function, and gbtree booster.

c) Catboost: Prokhorenkova et al. [53] introduced the
symmetric decision tree-based Catboost model in 2018. It
accurately processes categorical features with minimal infor-
mation loss. First, it employs the GBM technique of ordered
boosting to address target leaking difficulties. Second, it is
the best algorithm for dealing with small datasets. Thirdly,
Catboost computes the frequency of a certain feature cate-
gory, applies statistics procedures, and then incorporates some
hyper-parameters to produce numeral features. It converts the
categorial features into numerical features by preprocessing.
Moreover, it solves the issues of prediction shift, gradient
bias, and overfitting and improves model accuracy. Equation
(4) explains the transformation of categorical features into
numerical, where Cc is the class counter, average target Tavg ,
Pr is the initial numerator value, and Ct is the total counter.

Tavg =
Cc + Pr

Ct + 1
(5)

F(ti) =

N∑
k=1

ck1(t ∈ rj) (6)

In equation (5), F(ti) is the tree function of ti explanatory
variable and rj is the disjoint region in correspondence to
the leaves of the decision tree. We have used the following
hyperparameters to tune the Catboost model: 0.043 learning
rate, the symmetric tree growing policy, plain boosting type,
maximum leaves 64, 0.800 subsample, and 1000 iterations.

In this work, the prediction of network resource utilization is
a regression problem, where a model f maps the input feature
vector onto the label values (target features). The supervised
learning model f is trained using the training dataset. The
regression problem is represented as a minimization problem
in equation (6). The first component of the objective function
is an empirical risk, which is described by a loss function that
determines the model’s f quality. The regularization term is
the second component that calculates the complexity of model
f . lambda denotes the regularization parameter.

min(fm) =

n∑
k=1

L(fm((Xi), Yi) + λ(fm) (7)

We have used network resource usage dataset d with n
attributes D = (x1, y1), (x2, y2), ...(xn, yn). We split dataset
D into training and testing sets for training and validating the
proposed STEL model. The hybrid STEL model’s operational
mechanism is described in Algorithm 1. Base learner models
are trained with a training set, and the validation set is used
to validate the final prediction outcomes. The base learners
(Level-0) prediction results are inputted to train the meta-
leaner XGBoost model. Consequently, the XGBoost was built
using two base learners. The XGBoost model prediction results
are validated using the test set. So, the final resource usage
prediction results are the meta-regressor model results. The
STEL algorithm’s final resource usage prediction results are
the linear combination of base learner models: Catboost and
GBM, as formalized in equation (7). Where P(STEL) denotes
the final prediction, PCB and PGBM represents output of
Catboost and GBM method, α and β presents weighting
coefficient obtained from XGBoost fitting, and γ denotes
constant of correction.

P(STEL) = (PGBM ∗ α) + (PCB ∗ β) + γ (8)

d) Cloud Datasets for Evaluation: To evaluate the per-
formance of our STEL model, three real-time workload traces
were used: Materna (Bitbrains) [54], Google Cluster Traces
(GCT) [55], and VNFs traces collected from our testbed. The
Materna traces were collected over a three-month period with
1750 VMs and included 12 performance metrics such as CPU
usage, RAM, Disk usage, and throughput. The GCT workload
dataset, which was collected by Google, includes CPU and
memory utilization data of 12000 VMs every 5 minutes for
29 days. The third dataset, the VNF traces collected from
our testbed, contains CPU consumption in percentage over
a 5-minute interval. For a better understanding and analysis
of dataset patterns, Heat map visualization of the Bitbrains
dataset is illustrated in Figure 4, which depicts the correlation



Algorithm 1 Stacking ensemble learning model for network
resource workload prediction.

1: D ← {(x1, y1), (x2, y2)...(xn, yn)} ▷ network resource
utilization dataset

2: xn = Feature Vector, yn = Final Prediction => n = Total
Observations

3: Base Learners(level − 0)← {B1, B2...Bz}
4: Meta Learner(level − 1)←Ml

5: Ensemble Total Size(level − 1)← N
6: for n=1 to N do
7: Bz ← { creates Base Learners from D }
8: end for
9: → creation of new dataset (Dnew) for Meta Learner

10: Dnew ← 0
11: for m=1 to M do
12: for n=1 to N do
13: → make prediction with Meta Learner
14: Bmn = Bz(xm)
15: end for
16: Dnew = Dnew ∪ {((Bm1, Bm2...Bmz), ym)} ▷

combine different base regressor models
17: end for
18: → training of Meta Learner with new dataset Dnew

19: M t
l = Ml, (Dnew) ▷ training of level-1 model

20: Prediction results → final prediction of Meta Learner
(M t

l )
21: Model validation → test performance based on

RMSE,MSE,MAE,MAPE,R2 error metrics.

between distinct features. This correlation heatmap effec-
tively illustrates the mutual influence of various parameters
on one another, notably highlighting a notable connection
between CPU usage and memory usage. Figure 5 highlights
the dataset’s CPU and memory utilization patterns. It can be
observed that the actual CPU and memory are within the range
of 10 to 70% usage, but there are some spikes with 80% and
90% usage. So, the ML model learns from these patterns and
predicts future CPU and memory usage, which will be helpful
in detecting the overloading of resources causing performance
degradation and SLA violation.

Furthermore, we preprocessed the dataset using various
techniques, including outlier reduction, null value removal,
and data cleaning operations. Additionally, we split the data
with an 80:20 ratio for STEL model training and testing.
The STEL model performs satisfactorily, with a maximum
R2 = 0.93 regression accuracy for CPU utilization and a
maximum R2 = 0.94 for memory consumption. It predicts
future CPU usage and RAM usage of the core VNFs. We
performed short-term and mid-term forecasts such as minutes
and hours in C-DAF. Because of the recent studies, these two
parameters are important and used in many statistical and
heuristic-based algorithms to perform host mode detection,
VNF autoscaling, and the consolidation of VNFs in the data
center. Due to that, we have performed CPU and RAM

Fig. 4: Heatplot illustrates the correlation between features of
Bitbrains dataset

Fig. 5: Illustrates the CPU and memory usage patterns in
percentage from Bitbrains dataset

usage prediction for autoscaling of VNFs, and overload and
underload detection.

2) Network Anomaly Detection through AutoML and Voting
Ensemble Learning: Similar to network resource prediction,
anomaly detection and mitigation is also a crucial aspect
of network automation. It is a critical use case of NWDAF
defined by 3GPP. Network security has been a big challenge
due to the recent increase in smart devices. Therefore, anomaly
detection and mitigation have gained a lot of attention from
researchers. So, an automated ML mechanism is required to
detect the anomalies in the system and take proper action to
mitigate them from the network. So, we have proposed an
efficient H20 AutoML and voting ensemble learning-based
mechanism to detect and mitigate the anomalies from the 5G
network.

Figure 6 illustrates the proposed AutoML and voting en-
semble learning method workflow for network anomaly de-
tection. The functional aspects of the proposed method are
explained in various modules. In module 1, raw historical
data collected from the network is forwarded to the data
preparation and preprocessing module. Module 2 contains



various data preprocessing operations such as data cleaning,
data transformation, feature engineering, feature selection,
and reduction. Data cleaning and transformation handles null
values, outlier removal, and data normalization. Conversely,
the role of feature engineering is to perform feature analysis
to check the importance of all the features, remove irrelevant
features, and select important features for training the ML
models. After performing data preprocessing and splitting, the
selected most important training features are forwarded to the
AutoML module to check the output of various ML classifiers.
The AutoML module ranked the ML classifiers based on
the classification results. After that, in the next module, we
selected the top three performers ML classifier (CL) from the
AutoML module for performing the final prediction of network
anomalies. These ML classifiers are Random Forest, Catboost,
and XGboost. The ML classifiers’ are trained on training data,
and the results of these ML classifiers are combined through
a voting ensemble learning approach for performing the final
prediction. The voting ensemble learning method classifies the
traffic as per most voters from the AutoML classifiers. So,
testing data is used to evaluate the proposed AutoML and
voting ensemble learning mechanism. Several error matrices,
such as the receiver operating characteristic curve, F-score,
and accuracy, have been used to validate the proposed work
performance.

We have validated our mechanism on two datasets: a well-
known CICDDoS 2019 dataset [56] and an attack dataset from
a network slicing testbed. The first CICDDoS dataset was
collected by the Canadian Institute for Cybersecurity, which
contains 80 features and 12 different attack types. We have
performed various preprocessing and feature engineering oper-
ations and selected the most important features, such as source
port, destination port, flow duration, fwd packet length std,
total fwd packet, protocol, ack flag count, MinSegSizeForward
and destination port for training the proposed method. We have
used the 80:20% data for training and testing the AutoML
and voting ensemble learning-based mechanism. Conversely,
the second dataset was collected from a 5G network slicing
testbed containing 84 features, including slice information
[57]. We have used the 12 most important features such as
destination-IP, source port, flow duration, destination port,
source-IP, fwd packet length std, ACK flag count, total fwd
packet, protocol, slice-number, MinSegSizeForward for attack
detection. The attack traffic was generated using the Hping3
tool, and normal traffic was recorded from UE to the data
network(server). We have used 80% of the dataset for training
and 20% for testing purposes. The AutoML-trained model,
along with the voting ensemble-learning approach, efficiently
identifies network anomalies and reports them to the IBN
platform. This enables the execution of appropriate mitigation
policies to halt the anomalous flow.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

A. Network Slicing Results

The testbed of our implemented system comprises the
IBN framework, OSM orchestrator, FlexRAN, ML-NWDAF,

Fig. 6: Anomaly detection through AutoML and ensemble
learning model

and monitoring mechanism. We used 5G core components,
eNodeB/gNodeB, and simulated UEs from Open Air Inter-
face (OAI) for deploying 5G core and RAN setup [58].
5G core contains core network VNFs such as AMF, UPF,
and SMF. OSM with OpenStack operates within a server
machine featuring 32 cores and 252GB of memory. The OAI
eNB/gNB facilitates the RAN network capabilities, utilizing
a software-defined radio (SDR) universal software radio pe-
ripheral (USRP) B210. Notably, the OAI gNB is implemented
on a PC equipped with 16 GB RAM, Core i5 CPU, USB
port 3.0, and Ethernet 1GBit/s. The FlexRAN controller, a
key element, is hosted on a separate PC furnished with 16GB
RAM, i5 7400 CPU, and Ubuntu 18.04. For performing
e2e network slicing, OSM deploys core VNFs using VIM
OpenStack, and FlexRAN has been used to perform RAN
slicing. Moreover, dedicated core VNFs are assigned to each
RAN slice. Connectivity between the deployed core and RAN
networks is established following a 5G network topology.

Besides, IBN is a global orchestrator for automating the
configuration generation process for OSM and FlexRAN.
The IBN application was developed using Python, Java, and
MYSQL languages and executed on a designated PC. IBN
platform has a web portal where users can input slice require-



ments, including data rate (downlink and uplink throughput),
latency, slice ID, and slice type, and in return, the system
automatically translates the higher-level configurations into
policies with the help of other modules. Afterward, the created
policies are deployed using the FlexRAN controller and OSM
orchestrator to activate the RAN and core slice. Moreover,
network data analytics makes the IBN platform an autonomous
system that can perform proactive autoscaling of core VNFs
and detect overloaded and underloaded hosts.

Fig. 7: Achieved downlink throughput results with two de-
ployed slices through the IBN

The policy/slice template contains all the information re-
lated to the QoS requirements, such as bandwidth, memory,
CPU, instance (VNF) image information, etc. For example, the
RAN policy template generated by the RAN policy generator
contains a public land mobile network (PLMN), uplink, down-
link, slice-ID SNSSAI, and type of service. Further, these slice
QoS requirements are converted into the required number of
radio blocks through the RAN slicing application inside the
FlexRAN controller. Besides, the FlexRAN controller deploys
the resource through a static approach such as 50% 40% of
RAN resources. So, in our mechanism, we have used both
static and dynamic policies for slicing the RAN resources.
Conversely, the dedicated EPC VNFs are activated similarly to
the specified resources in the user contract and assigned to the
RAN slice. The RAN slice template contains dedicated MME
and other EPC VNF configurations for establishing an e2e
connection. So, in this way, our IBN system instantiates and
activates core and RAN network slices over the infrastructure.
In addition, NWDAF ML models have been implemented
using Python language, TensorFlow, Pandas, and Matplotlib.
We have also used Anaconda Jupyter and Google Colab
platforms for training and testing the ML models.

We conducted iPerf tests to evaluate the stability of our
IBN system by deploying three different types of slices IoT,
eMBB, and URLLC slice. In the first case, we have deployed
two slices, eMBB, and IoT, with 50% of RAN resources,
by inserting QoS requirements through the portal, and the

Fig. 8: Achieved downlink throughput results with three de-
ployed slices through the IBN

Fig. 9: Average jitter delay for two activated slices

system automatically activates the e2e network slice with the
cooperation of other components. Figure 7 shows the downlink
speed recorded through the deployed e2e eMBB and IoT slice.
The eMBB and IoT slices show almost similar throughput
maximum of 23MB/s because of the equal resources requested
through the SLA. Conversely, Figure 8 presents recorded
downlink throughput results of three slices with different
requirements. We have deployed eMBB, URLLC, and IoT net-
work slices with 30%, 20%, and 50% of total RAN resources,
respectively. The IoT slice achieved a downlink throughput
of 25 MB/s, and the eMBB slice 17 MB/s. Conversely, the
URLLC slice achieved a maximum of 9 MB/s downlink
throughput. We have calculated the average jitter delay on
two deployed slices for more evaluation of our IBN-based
network slicing testbed. Figure 9 depicts the average jitter
by performing multiple tests on IoT and eMBB slices, where
the IoT slice has achieved a lower jitter of around 5ms, and



eMBB achieved 7.1ms, showing satisfactory performance. The
primary purpose of testing the throughput is not to compare the
performance with industrial standards but to show the stability
of the IBN framework for creating e2e slices.

B. ML-STEL method performance Analysis and Evaluation

This section provides the STEL method’s performance anal-
ysis with the help of benchmark methods and error measures.
It performs a short-term future prediction based on 5m. We
used five error metrics to validate STEL method prediction
performance: mean square error (MSE), mean absolute per-
centage error (MAPE), root mean square error (RMSE), and
regression-score accuracy R2. According to the literature, a
high regression score R2 and low MSE, RMSE, MAE, and
MAPE are used to validate the regression model’s results. The
mathematical equations for each of the performance metrics
are listed below. Where Ai and Pi are the actual and predicted
value at the time i, and k is the prediction window size.

MSE = 1/k
k∑
i

(Ai − Pi)
2 (8)

RMSE =

√√√√1/k

k∑
i

(Ai − Pi)2 (9)

MAE = 1/k

k∑
i

|Ai − Pi| (10)

MAPE = 1/k

k∑
i

|Ai − Pi

Pi
| (11)

R2 = 1−
∑k

i (Ai − Pi)
2∑k

i (Ai − P
−
i )2 (12)

The prediction results show that the proposed STEL method
performs better than others. The STEL method achieved lower
RMSE, MSE, MAE, and MAPE and high regression scores
for memory and CPU utilization prediction. Conversely, it
achieved the maximum of R2 = 0.94 and R2 = 0.93 accuracy
for memory and CPU usage prediction. Table 1 highlights the
achieved error metrics by the STEL model while performing
memory and CPU utilization prediction on two datasets.

Figure 10 illustrates the CPU and memory utilization
forecasting results of the implemented STEL model on the
Bitbrains dataset. The CPU workload prediction results are
close to the actual utilization pattern, showing the STEL
model’s satisfactory performance in accuracy. The predicted
results are dependent on the dynamics of the resource usage
dataset. Figure 10 (a) presents the CPU workload prediction
results on the Bitbraisn dataset where the STEL method
achieved lower error rates RMSE = 4.51, MSE = 9.02,
MAE = 3.93, and MAPE = 7.22. Conversely, it achieved a
R2 = 0.90 regression accuracy for CPU prediction. However,
it can be visible from the high CPU usage spikes in the
diagram that there are some prediction errors. These errors

TABLE I: Illustrates the achieved error metrics by proposed
STEL method while performing network workload prediction

GCT Dataset Bitbrain Dataset
Evaluation Metrics Memory CPU Memory CPU
MSE 8.23 4.50 4.02 9.02
RMSE 4.11 2.25 2.01 4.51
MAE 3.72 1.11 1.44 3.93
MAPE 6.82 4.55 4.22 7.22
R2 0.91 0.93 0.94 0.90

are the result of a sudden increase in CPU usage. So, the
model could have predicted these points better because these
values are outliers and do not follow usage patterns in the
dataset. Figure 10 (b) depicts the memory utilization prediction
results on the Bitbrains dataset where the implemented STEL
model achieved lower RMSE = 2.01, MSE = 4.02,
MAE = 1.44, MAPE = 4.22 and a high R2 = 0.94. These
error measures are minimal as compared to other models.

Figure 11 illustrates the prediction results of the imple-
mented STEL model on the GCT dataset. Figure 11 (a)
presents the CPU utilization prediction outcomes where our
STEL method obtained RMSE = 2.25, MSE = 4.50,
MAE = 1.11, MAPE = 4.55 and R2 = 0.93. Conversely,
Figure 11 (b) depicts the memory utilization prediction results
where our STEL method achieved RMSE = 4.11, MSE =
8.23, MAE = 3.72, MAPE = 6.82 and R2 = 0.91. Overall,
the STEL model performed well on the GCT dataset, with
low error rates and a high regression score of R2 > 0.90.
Additionally, the STEL model demonstrated comparable per-
formance on the VNFs dataset, with a high regression accuracy
of R2 = 0.89 when forecasting future CPU usage.

Table 2 compares the STEL method with state-of-the-
art LR, LSTM, SVR, ANN, hybrid CNN and LSTM, and
deep belief network (DBN) models. To perform a thorough
comparison, these models were applied to all datasets. On the
GCT dataset, the STEL method outperformed other models,
achieving an RMSE of 2.25, while LR, LSTM, SVR, ANN,
CNN and LSTM, and DBN obtained RMSE values of 7.79,
6.20,5.73, 12.77, 8.32 and 11.27, respectively. Similarly, on
the Bitbrains dataset, the STEL method achieved an RMSE
of 4.52, while LR, LSTM, SVR, and ANN obtained RMSE
values of 14.23, 7.22, 12.48, 42.34, 10.13, and 9.51, respec-
tively. The results show that the implemented STEL method
outperforms other models in resource workload prediction,
with lower error rates on both benchmark datasets.

The results indicate that the hybrid STEL model demon-
strates adequate performance with higher accuracy and lower
error rates when predicting multi-attribute network resource
utilization. Moreover, the IBN decision engine is a decisive
part that uses the STEL model’s short-term prediction outputs
for autoscaling resources, host overload, and underload detec-
tion. It contains dynamic thresholding such as Inter Quartile
Range (IQR) and Local Regression (LR) based methodology
that determines the VNF scaling decision, for example, over-
loading and underloading. IBN triggers a policy to deploy
extra VNFs by a sudden increase in network traffic to prevent



Fig. 10: Presents STEL model prediction results on Bitbrains dataset a) illustrates the actual and predicted CPU utilization b)
Illustrates actual and predicted memory utilization

Fig. 11: Presents STEL model prediction results on GCT dataset a) illustrates the actual and predicted CPU utilization b)
Illustrates actual and predicted memory utilization

TABLE II: Comparison of proposed STEL method with other
state-of-the-art methods

Models RMSE (GCT Dataset) RMSE (Bitbrain Dataset)
LR 7.79 14.23
LSTM 6.203 7.22
SVR 5.73 12.48
ANN 12.77 42.34
CNN+LSTM 8.32 10.13
DBN 11.27 9.51
Proposed STEL 2.25 4.51

performance degradation. So, IBN ensures QoS assurance and
SLA violation reduction due to directions provided by the
decision engine based on ML-based STEL prediction results.

C. AutoML and Voting Ensemble Learning method perfor-
mance Evaluation

This section explains the results achieved through the
proposed AutoML and voting ensemble learning mechanism
for attack detection and classification from the networks.
We have used the 80:20 ratio of both datasets to train and
test the model. Moreover, we have compared the proposed
method with BLSTM, SVM, MLP, and deep neural network
(DNN) based on well-known error measures such as accuracy,
precision, recall, and F1 measure. These are the important

metrics to validate the classification performance of ML mod-
els. Accuracy is used as an evaluation metric that shows the
overall performance of the ML models. Equation 1 illustrates
the mathematics behind the accuracy (A) metric, where Tp

presents the number of correctly classified instances as N,
Fp shows the number of cases wrongly classified as N, Tn
highlights the number of correctly classified instances Not-N,
and Fn denotes the number of wrongly classified instances
Not-N.

A =
Tp + Tn

Tp + Fn + Fp + Tn
∗ 100% (13)

The results presented in Figure 12 illustrate the achieved
error measures through the proposed AutoML and voting
ensemble learning model and others BLSTM, SVM, MLP,
and DNN on the CICDDoS dataset. It can be observed that
our model achieved almost 99.22% accuracy, 99.20 F1-score,
99.31 recall, and 99.15 precision. Besides, the BLSTM, SVM,
DNN, and ML achieved 97.53%, 96%, 90.22%, and 86.63%
accuracy, respectively. Hence, our AutoML and voting ensem-
ble learning model outperforms other models and performs
optimally.

Figure 13 depicts the achieved error measures of the
proposed method compared to other methods on the net-



Fig. 12: Result of achieved error measures on CICDDoS attack
dataset

Fig. 13: Result of achieved error measures on network slicing
attack dataset

work slicing dataset, where the proposed method achieved
accuracy = 98.84%, F1 − sore = 96.146, recall = 94.54,
and precision = 97.81. The other methods achieved accuracy
of BLSTM = 97.21%, SVM = 94.53%, DNN = 88.82%,
and MLP = 82.84%. So, our method achieved 98.84%
accuracy for network anomaly prediction and performed bet-
ter than other methods. Further, MLP, DNN, and BLSTM
models take more training time and consume more resources
than our model. However, the proposed model’s superiority
indicates the model’s effectiveness while performing attack
classification on two different datasets. It is incredibly efficient
in terms of speed and resource consumption. Besides, the IBN
decision engine uses the attack detection and classification
results generated by the hybrid model, which mitigates the
abnormal flow from the system. Consequently, our NWDAF

offers dual functionalities: detecting and preventing attacks
within the network through optimized AutoML, as well as
predicting future resource load using the STEL model. So,
the IBN platform with NWDAF assures proactive and efficient
management of the network resources.

D. Discussion

The presented results show that the IBN platform can au-
tomatically create, activate, and deactivate the network slices.
The multiple VNFs are deployed through our system for cre-
ating core and RAN network slicing. Hence, our implemented
system performs stable while creating multiple e2e network
slicing. It is a closed-loop mechanism that can orchestrate
and manage the complete lifecycle of e2e network slices.
Moreover, the ML-based NWDAF module is an interesting
feature of our system, which predicts future resource utiliza-
tion through the STEL model and detects network anomalies.
The IBN system uses these prediction results for efficient and
proactive management of the core resources. So, our system
can proactively prepare the resources whenever the traffic
demands increase. It performs autoscaling by checking STEL
prediction and efficiently placing the VNFs on the edge or
core cloud location.

E. Limitations

Despite many advantages of the implemented mechanism,
there are a few limitations. The dynamic allocation of RAN
resources still needs to be improved. We plan to develop
a reinforcement learning-based application to dynamically
provision RAN resources for each slice type. Further, our
system has yet to handle the mobility management of the
users. We need to add more functionalities to NWDAF for
the RAN part, such as RAN slice traffic prediction, dynamic
provisioning of resources, and mobility prediction. Further-
more, our mechanism still needs to extend intent translation
through natural language processing (NLP) to achieve zero-
touch network automation. Intent translation through NLP
needs a suitable vocabulary dataset related to network slicing.
So, we will prepare a dataset related to network slicing for
developing an intent translation mechanism through NLP.

V. CONCLUSION

This paper explained the IBN framework and novel net-
work data analytics mechanisms for automating, managing,
and proactively updating network slices for novel consumer
electronics and B5G services. IBN follows a one-touch process
where the user inputs abstract slice QoS requirements. In re-
turn, the system translates them into policies and deploys them
over the core and RAN infrastructure using the various orches-
trator and RAN controllers. It creates, activates, monitors, and
deactivates the e2e slices in an automated fashion. It can also
handle and manage the network slices over the multidomain
infrastructure. Several tests have been conducted to evaluate
IBN mechanism performance by deploying multiple slices
over the virtual and physical infrastructure that show adequate



performance in resource stability, automated resource provi-
sioning, customization, and resource assurance. Moreover, the
STEL model and optimized autoML-based methods have been
implemented inside NWDAF to predict network resource us-
age and detect network anomalies. So, AI-based network data
analytics with IBN provides the functionalities of autoscaling
core resources and detecting and preventing attacked traffic
from the network. So, IBN uses these prediction results to
guarantee QoS and improve network security. In the future, we
will add more functionalities to the IBN system by using novel
AI technologies for network automation, such as transformers
for efficient resource forecasting and blockchain-based zero
trust networks for future 6G networks.
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